Menu
Cart
4 inch Semi-Insulating Fe-doped GaN 4 um Gallium Nitride Template on Sapphire (0001),  MSE Supplies LLC

4 inch Semi-Insulating Fe-doped GaN 4 um Gallium Nitride Template on Sapphire (0001)

  • $ 87500

Qty (pieces) Price (per piece)
1 - 1 $ 875.00
2 - 10 $ 855.00
11 - 11+ $ 835.00

Product Description: 4 inch Semi-Insulating Fe-doped GaN 4 um Gallium Nitride Template on Sapphire (0001)

Product Number: WA0246

Specifications:

  • Conductivity type: semi-insulating
  • Doping type: Fe compensated (iron-doped)
  • Fe-doping concentration: 1019 cm3
  • Dimension: 100 mm +/- 0.1 mm (4 inch diameter)
  • GaN Thickness: typical thickness 4 um
  • Usable area: >90%
  • Bow: less than +/- 60 um
  • Orientation: C plane (0001) +/- 0.5 deg
  • Primary Orientation Flat: (1-100) +/- 0.5 degree, length 30.0 +/- 1.0 mm
  • Total Substrate Thickness Variation: <25 um
  • Resistivity (300K): >1x10Ohm-cm
  • Dislocation Density: < 5x108 cm-2
  • Rocking Curve XRD: full width at half maximum (FWHM) XRD (102) < 300 arcsec (typical value less than 200), XRD (002) < 250 arcsec (typical value less than 100)
  • Sapphire substrate thickness: 650 +/- 25 um
  • Orientation of sapphire substrate: C plane (0001) off angle toward M-axis 0.2 ± 0.1,  length 30.0 +/- 1.0 mm
  • Substrate Structure: GaN/Sapphire (0001)
  • Polishing: single side polished (SSP) to Ra < 0.5 nm with CMP
  • Package: packed in a class 1000 clean room environment in cassettes of single wafer containers.

Related Reference

Semi-insulating GaN substrates for high-frequency device fabrication

Abstract

Thick c-plane unintentional doped and iron-doped GaN substrates were grown by hydride vapor phase epitaxial technique on sapphire substrates. The morphology and crystalline quality of the freestanding samples show no evident degradation due to iron doping. Low-temperature photoluminescence measurements show reduction of the exciton-bound to neutral impurities band intensities with iron doping increase. Near-infrared photoluminescence studies confirm the incorporation and activation of iron impurities. Variable temperature resistivity measurements verified that the iron-doped films are semi-insulating.