MSE PRO 1.1 mm 15 Ohm/Sq FTO Coated Glass Substrates

  • $ 19900

FTO glass substrate, Fluorine Doped Tin Oxide (FTO) coated soda lime glass

  • Glass: NSG Soda Lime Glass
  • Glass Transition Temperature: 564°C (1,047°F )
  • Typical Dimensions: 1" x 1" (25 mm x 25 mm), 2" x 2", 4" x 4", can be customized to any size specified by the customer.
  • Glass Thickness: 1.1 mm or 2.2 mm, other sizes are available upon request
  • Nominal FTO Film Thickness: 320 ~ 340 nm
  • Special Patterns: can be customized according to customer provided drawings.
  • Sheet resistance: ~15 Ohm/sq, other values can be customized.
  • Etching Capability: Laser etching or wet etching for detailed patterns.
  • Maximum operating temperature: Although the FTO film can be heated up to 700°C, the soda lime glass (SLG) substrate has a glass transition temperature of 564°C. The recommended maximum operating temperature for FTO coated SLG substrates is up to 550°C.

    FTO coated conductive glass substrates

    Grade (ohm/sq)

    Size: L x W (mmxmm)

    Thickness (mm)

    Minimum of Order

    Prices of non-etched ($/sheet)

    Prices of etched pattern ($/sheet)




    100 Sheets


    Contact Us




    100 sheets


    Contact Us




    50 sheets


    Contact Us




    25 sheets


    Contact Us


    Applications for ~15 ohm/sq FTO Coated Glass Substrates

    High quality sputtered fluorine-doped tin oxide (FTO) films can be used as electrodes for thin film photovoltaic /solar cells (dye-sensitized cells, organic solar cells), LED display, electrochemical deposition, capacitors, Infrared detection, energy-saving windows, RFI/EMI shielding and other electro-optical and insulating applications. Fluorine doped tin oxide is relatively stable under atmospheric conditions, chemically inert, mechanically hard and abrasion tolerant, high-temperature resistant and has lower cost than indium tin oxide (ITO).

    FTO is well recognized as an attractive material because it is relatively stable under atmospheric conditions, chemically inert, mechanically hard, high-temperature resistant, and has a high tolerance to physical abrasion.

    Customer Testimonials

    "I very much appreciate the great customer service and rapid processing time for customized FTO glass slides. The substrates are very uniform and the thickness is perfect for electrochemical depositions and SEM imaging! I highly recommend all electrochemists to buy their substrates from MSE Supplies."
    -Dr. Agnes Thorarinsdottir, Postdoctoral Fellow, Harvard University

    Carlos Biaou, a PhD student at UC Berkeley worked with MSE Supplies to fabricate several hundred customized ITO and FTO substrates for his thesis research, and he had a very positive feedback on the products and services he received from MSE Supplies.

    • "The uniformity of the ITO and FTO layers were excellent, and the custom pattern I ordered was well formed."
    • "The variation in size from substrate to substrate is within the margins of errors I needed, so that's great too."
    • "I appreciate the great customer service and diligence you've shown in customizing my substrates."

    Dr. Selma Duhovi from MIT has used the ITO and FTO substrates provided by MSE Supplies for smart glass application, and has been very satisfied with the products and services provided by MSE Supplies.

    • "The FTO and ITO glass slides you sent me work GREAT!"
    • "The substrates work really well for smart glass application."
    • "The experiments have gone well!"
    Typical Academia Customers
    NREL, PNNL, UC Berkeley, UCLA, Caltech, MIT, Yale, University of Michigan, Cornell, University of Chicago, State University of New York (SUNY), McMaster Univ., National Physical Laboratory (NPL), etc.


    FTO Related Publications:

    Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Science 17 Feb 2017: Vol. 355, Issue 6326, pp. 722-726, Hairen Tan, Ankit Jain, Oleksandr Voznyy, Xinzheng Lan, F. Pelayo García de Arquer, James Z. Fan, Rafael Quintero-Bermudez, Mingjian Yuan, Bo Zhang, Yicheng Zhao, Fengjia Fan, Peicheng Li, Li Na Quan, Yongbiao Zhao, Zheng-Hong Lu, Zhenyu Yang, Sjoerd Hoogland, Edward H. Sargent

    Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, Volume 516, Issue 14, 30 May 2008, Pages 46134619, Seigo Ito, Takurou N. Murakami, Pascal Comte, Paul Liska, Carole Grätzel, Mohammad K. Nazeeruddin, Michael Grätzel

    Compositional engineering of perovskite materials for high-performance solar cells, Nature 517, 476480 (22 January 2015) doi:10.1038/nature14133, Nam Joong Jeon, Jun Hong Noh, Woon Seok Yang, Young Chan Kim, Seungchan Ryu, Jangwon Seo & Sang Il Seok

    Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells, Scientific Reports 3, Article number: 1352 (2013)
    doi:10.1038/srep01352, Wu-Qiang Wu, Bing-Xin Lei, Hua-Shang Rao, Yang-Fan Xu, Yu-Fen Wang, Cheng-Yong Su & Dai-Bin Kuang

    Ultra-thin high efficiency semitransparent perovskite solar cells, Nano Energy
    Volume 13, April 2015, Pages 249-57, Enrico Della Gasperaa, Yong Peng, Qicheng Hou, Leone Spicciac, Udo Bacha, Jacek J. Jasieniaka, Yi-Bing Cheng